skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mitchell, Lawrence"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present an implementation of the trimmed serendipity finite element family, using the open-source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring H 1 , H (curl), or H (div)-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements, while being able to offer significant savings in the time or memory required to solve certain problems. 
    more » « less
  2. Effective relaxation methods are necessary for good multigrid convergence. For many equations, standard Jacobi and Gauß–Seidel are inadequate, and more sophisticated space decompositions are required; examples include problems with semidefinite terms or saddle point structure. In this article, we present a unifying software abstraction, PCPATCH, for the topological construction of space decompositions for multigrid relaxation methods. Space decompositions are specified by collecting topological entities in a mesh (such as all vertices or faces) and applying a construction rule (such as taking all degrees of freedom in the cells around each entity). The software is implemented in PETSc and facilitates the elegant expression of a wide range of schemes merely by varying solver options at runtime. In turn, this allows for the very rapid development of fast solvers for difficult problems. 
    more » « less